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ABSTRACT 

Driven by legislative pressures an increasing number of manufacturing companies have been 

implementing comprehensive recycling and remanufacturing programs. The accurate 

forecasting of product returns is important for procurement decisions, production planning, 

and inventory and disposal management in such remanufacturing operations. In this study, we 

consider a manufacturer that also acts as a remanufacturer, and develop a generalized 

forecasting approach to determine the distribution of the returns of used products, as well as 

integrate it with an inventory model to enable production planning and control. We compare 

our forecasting approach to previous models and show that our approach is more consistent 

with continuous time, provides accurate estimates when the return lags are exponential in 

nature and results in fewer units being held in inventory on average. The analysis revealed 

that these gains in accuracy resulted in the most cost savings when demand volumes for 

remanufactured products were high compared to the volume of returned products. Such 

situations require the frequent acquisition of cores to meet demand. The results show that 

significant cost savings can be achieved by using the proposed approach for sourcing product 

returns. [Submitted: July 23, 2011. Revised: October 3, 2011; November 16, 2011; Accepted: 

November 29, 2011.] 

Key words: Closed-Loop Supply Chains, Inventory Management, Operations Forecasting, 

Remanufacturing 
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INTRODUCTION 

Remanufacturing is the process by which products are recovered, processed, and sold as 

like-new products in the same or separate markets. In a survey reported in Hauser and Lund 

(2003), remanufacturing operations accounted for total sales in excess of $53 billion per year. 

The US Environmental Protection Agency (EPA) cites remanufacturing as an integral 

foundation of reuse activities and reports that less energy is used and fewer wastes are 

produced with these types of activities (EPA, 1998). Increasing legislation is one of the 

primary forces driving the remanufacturing revolution. At the same time many firms have 

realized that being “green” can actually be profitable. In the past decade a number of 

companies have implemented comprehensive remanufacturing programs. However, few 

guidelines are available to the practicing manager to aid in planning, controlling, and 

managing remanufacturing operations (Souza, 2008).  

Production planning and control activities are more complex and difficult for 

remanufacturers partly because of the timing uncertainty of returned products. The returns 

that are used for remanufacturing are products that are sold to the customer and are returned 

when their useful life is over or when the customer wants to trade in the product for an 

upgrade or another unit of the product. Forecasting the proportions of product returns is 

important for procurement decisions, capacity planning, and disposal management. From an 

operational standpoint, accurate forecasting of the returned product quantities (in each period) 

is useful for production planning and inventory management. 

Forecasting of product returns has been studied by Toktay, Wein and Zenios (2000) for 

disposable cameras, Kelle and Silver (1987) for reusable containers, and Goh and Varaprasad 
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(1986) for returnable bottles. In each of these environments, typically, only the sales and 

return volume in each period are known and the timing of returns and sales are unknown. 

Toktay (2004) defines this type of data as period level information and defines data in which 

the timing of sales and returns are tracked on an individual basis as item-level information. 

One method for forecasting returns with period level data is to use a time series consisting of 

past return volumes to forecast future return volumes; however such a method would ignore 

past sales data and therefore result in inaccurate results. The key to forecasting returns is the 

observation that returns in any one period are generated by sales in the preceding periods. 

Goh and Varaprasad (1986) proposed a Box-Jenkins transfer function model relating returns 

to previous sales. This model estimates the probability of a return after a certain number of 

periods, for a fixed set of data. However, in practice, the data is not fixed but is augmented in 

each period as new sales and return information become available. A model which is 

conducive to data augmentation is the distributed lag model (DLM) considered by Toktay et 

al. (2000). Another advantage of using this type of model is that it generally involves the 

estimation of fewer parameters than the transfer function method; therefore less data is 

required for the analysis. In the current study a Bayesian estimation approach is used with a 

DLM to forecast product returns. The model’s key departure from the Toktay et al. (2000) 

approach is discussed in detail later. 

 While our approach can be applied in a variety of remanufacturing environments, the 

details of our model are rooted in the remanufacturing operations of an electronics original 

equipment manufacturer (OEM) located in the Midwest. The OEM designs and manufactures 

components for telecommunication applications, medical systems, commercial imaging, and 
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field-deployable defense applications. These components are in the form of embedded circuit 

boards and modular storage units. The OEM also remanufactures these components and is 

also a contract remanufacturer of some of the products that these components are placed in. 

 The OEM has service contracts with several of its customers containing clauses for repair 

as well as remanufacturing of the components and the products that the components are 

placed in. The service contract requires the OEM to be responsible for disposal or reuse of 

components and products. Also, a product returned to the OEM for repair or maintenance can 

itself be remanufactured and components can be replaced with remanufactured parts. Because 

of the requirements of the contractual agreement, the OEM accepts all products returned by 

the customer irrespective of the quality of the returned product. Therefore customers can 

return products to the OEM after their end-of-life or end-of-use and the OEM either disposes 

or remanufactures the products. The OEM’s primary source of cores (a core is a returned 

product that can be remanufactured; Hauser & Lund, 2003) for remanufacturing is returned 

products from customers for repair, end-of-use, or end-of-life.  

The OEM is a contract remanufacturer therefore the volume of products 

remanufactured by the OEM is determined by the monthly orders of the contractor(s). The 

terms of delivery are specified in the contract agreement. 

At the start of each month the OEM takes stock of the cores in inventory. If there is an 

insufficient quantity of cores in-stock to meet the period’s demand for remanufacturing 

(demand includes orders for remanufactured products and components for any repairs due in 

the next period) the OEM places an order for the balance of cores with core brokers. Ordering 

from brokers at the start of the month has three main advantages. First, the timing of product 

returns is uncertain and therefore the OEM’s use of brokers early, as opposed to after 
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observing cores returned by customers during the month, leads to a more efficient scheduling 

of labor and materials for production. Second, by committing early to a bulk order at the start 

of the month, the OEM is often able to elicit discounts from the brokers. Third, by contacting 

the brokers early the OEM is able to give the brokers more time to allocate resources and 

effort toward fulfilling the order, thereby reducing the risk that the brokers will be unable to 

fulfill the order on time. If the brokers are unable to deliver the full order quantity on-time 

then as a last resort, the OEM will use new parts (either purchased or from stock) to meet the 

shortage. Even though new parts can be used for remanufacturing in the event of a shortage 

of cores, the reverse is not true in this case; remanufactured parts are not used as a substitute 

for new parts. This means that demand for new component parts and remanufactured parts are 

independent demand streams. Figure 1 below shows the setup for a product in the 

environment being considered when demand is greater than the on-hand inventory at the start 

of the period. 

INSERT TABLE 1 ABOUT HERE 

 

INSERT FIGURE 1 ABOUT HERE 

 

A timeline of the acquisition decision described in Figure 1, with and without the use of 

forecasting, is shown in Figure 2 below.  

INSERT FIGURE 2 ABOUT HERE 
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Currently, similar OEMs acquire cores according to the timeline shown in Figure 2a. In 

Figure 2a the OEM does not estimate the quantity, 𝑄 , and therefore the demand balance for 

cores is satisfied by acquired units and all returned products which can be remanufactured 

during the period are placed in inventory. The OEM is considering acquiring cores using the 

timeline shown in Figure 2b in which forecasts of the distribution of 𝑚  are used to estimate 

the quantity 𝑄 . By accurately estimating the 𝑄  quantity at the start of the month (i.e., at 

time t-1), the OEM can better plan for the quantity of cores to acquire for production (i.e., 𝐴 ) 

and manage inventory more efficiently. However, both the over and under estimation 

of 𝑄  have cost implications. Overestimation of 𝑄  (i.e., less remanufacturable returns 

arrive in period t than predicted by the forecast of the distribution of 𝑚  ) leads to either an 

expedited order to the brokers at premium costs, or the use of new parts for remanufacturing, 

which are at a higher cost. Underestimation of 𝑄  (i.e., more remanufacturable returns arrive 

in period t than predicted by the forecast of the distribution of 𝑚 ) would result in either an 

accumulation of cores in inventory for the period, if there is sufficient space, or a removal of 

valuable usable parts from the cores followed by disposal of remaining parts if there is 

insufficient space to hold all the returns in inventory. For strategic reasons, the OEM prefers 

to remove valuable usable parts from the cores and then dispose of the remaining parts of the 

cores, when there is insufficient space, rather than simply sell the core to brokers. 

 While the key decision variable in Figures 1 and 2 is 𝑄 , estimating 𝑄  depends on 

knowledge about the distribution of 𝑚  (i.e., the probability distribution of the number of 

remanufacturable products returned in each period). The quantity, 𝑄∗, that minimizes the 

inventory and purchasing costs of cores can be determined with forecasts of the distribution 
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of product returns. We illustrate this approach in a later section. In the literature review 

section we provide an overview of existing methods that have been used to model the 

distribution of 𝑚 , and show how these methods have been applied to production control for 

reuse activities. While the dual sourcing environment shown in Figure 1 is based on the 

service contract that the OEM has with its customers for disposal and reuse of returned 

products, the same environment arises because of environmental legislation. Laws mandating 

companies to be responsible for take-back of electronic wastes are becoming prevalent in the 

US, at the state level. The Remanufacturing Institute (www.reman.org) reports that as of May 

2011, 26 states in the US had passed laws requiring OEMs to be responsible for taking back 

and reusing and/or disposing of electronic products at end-of-life. OEM- remanufacturers in 

states which have passed such laws may likewise face the forecasting problem described 

above. 

 

LITERATURE REVIEW 

Forecasting models for production are usually used for demand forecasting. An overview of 

the methods used to forecast demand for production can be found in Nahmias (2000, p. 

59–108). A distinguishing characteristic of forecasting returns for remanufacturing are that 

the amounts forecasted depend on the volume of the original product sold. Failure to exploit 

this characteristic will result in inaccurate forecasts. Traditional time series methods used for 

forecasting demand such as exponential smoothing or ARIMA cannot exploit this relationship 

between returns and sales since the dependence of sales and returns cannot be represented in 

these models. Therefore the use of such models to forecast product returns would yield 
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inaccurate forecasts. 

  Goh and Varaprasad (1986) were one of the earliest to consider the relationship between 

sales and returns in a model they used for forecasting the returns of returnable bottles. They 

used a Box–Jenkins transfer function model that required large amounts of returns and sales 

data in order to obtain estimates of the probability that a product will be returned in each of 

the periods considered in the dataset. Once the estimates were obtained, they were used to 

forecast all future returns. A drawback to this approach is the data requirement. Chatfield 

(1996) evaluated Box–Jenkins transfer function models and noted that effective fitting of 

Box–Jenkins models required at least fifty observations in order to obtain reliable estimates.  

 Kelle and Silver (1989) developed a forecasting model for the acquisition of reusable 

containers which required less parameter estimations than the Goh and Varaprasad (1986) 

model. Like Goh and Varaprasad (1986) they also exploited the relationship between returns 

and past sales in their forecasting model. They developed a normal approximation to a 

multinomial distribution for returns, based on past sales, and they used this approximation to 

estimate the mean and variance of returns. These estimates were then used to compute a base 

stock level for a continuous review system used for remanufacturing. A drawback of their 

model is that it could not be easily updated and so new sales or return information would 

require re-estimation of the model parameters, involving multiple inference procedures and 

steps.   

As previously mentioned, a characteristic of the remanufacturing environment is that 

the data is usually augmented in each period as new sales and return information becomes 

available. Bayesian estimation facilitates data updating and is therefore a natural 
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methodology for estimating product returns. Toktay et al. (2000) used Bayesian methods to 

estimate parameters for the distribution of product returns. They used a DLM to capture the 

dependence of returns on sales in previous periods.  

DLMs have played a prominent role in numerous applications in the economics and 

agricultural economics literature. Early examples include the study on the response of capital 

investment to various aspects of the economic environment (Koyck, 1954), the studies by 

Nerlove (1958) on the response of agricultural supply to price, and the study on capital 

appropriations and expenditures by Almon (1965). Many econometric textbooks include a 

chapter on DLMs. As an example, when forecasting product returns let 𝑛  and 𝑚  denote 

the number of products sold and returned at time t, respectively; the general form of a DLM 

is as follows: 

 𝑚 ∑ 𝛽 𝑛 𝜀 ; For 𝑡 2,3, … ,𝑇.      

 (1) 

Equation (1) is known as the finite distributed lag model. The 𝜀  terms are usually assumed 

to be additive white noise (i.e., normally distributed, independent of the 𝑛  values, 

independent of each other, with a constant variance given by 𝜎 ). The term 𝛽  in Equation (1) 

is the kth reaction coefficient, and it represents the proportion of 𝑛  (e.g., sales in period 

t-k) that contributes units toward 𝑚  (i.e., the returns in period t). T is a finite period and 

represents the maximum number of periods of data available for estimation. One important 

aspect to be considered is the number of parameters involved in Equation (1). If the number 

of terms in Equation (1) is small (i.e., T is small) then the equation can be estimated by using 

ordinary least squares (OLS). Usually, when historical sales and return data is used for 
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estimation there are many terms and little is known about the form of the lag. In that case, 

direct estimation via OLS uses up a large degree of freedom and is likely to lead to imprecise 

parameter estimates because of multicollinearity (Pindyck & Rubinfeld, 1998). These 

difficulties can be avoided by assuming that the 𝛽  coefficients are not all independent but 

functionally related (Zellner, 1971). There are different specifications for this functional 

relationship. Some of them are based on economic theory; others are based on expert opinion. 

Functions which have typically been used to represent these relationships include the 

geometric distribution first used by Koyck (1954), the negative binomial (or Pascal) 

distribution first used by Solow (1960), and a polynomial function first used by Almon 

(1965). The polynomial function developed by Almon (1965) offers the most flexibility, in 

terms of the various shapes that can be accommodated by the function, but requires several 

conditions to be met before it can be successfully used, and the parameters of the Almon 

model can be difficult to interpret (Pindyck & Rubinfeld, 1998). The Koyck (1954) and 

Solow (1960) methods do not have these issues.   

In the case of remanufacturing, the functional relationship between the 𝛽  

coefficients is called the delay function and it represents the time for returns to be made. 

Toktay et al. (2000) used geometric and negative binomial delay functions to represent the 

𝛽  coefficients as follows:          

         ;           (2) 

where 𝑝 is the probability that a sold product will ever be returned; q is the conditional 

probability that a product would be returned in the next instance of time given that it will be 

returned; r is a parameter pre-specified to represent the lag with the largest 𝛽  coefficient. 

1)1(  k
k qpq ,)1(

1 kr
k qq

r

rk
p 
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The negative binomial delay function allows for more flexibility in the shape of the function 

compared to the geometric delay function. 

The geometric and negative binomial distributions are discrete and assume that delay 

lags are of equal periods and are thus best suited for use with integer time periods. In 

practical terms, equal lags mean that the assumption is being made that sales and return 

volume information is being recorded at equal times each period (e.g., the same number of 

days between each record of returns or sales) and also that any sales used to obtain the 

forecast are end-of-period sales. There are situations when managers may want to make a 

forecast decision based on the most recent information available rather than wait until the end 

of the period to make the forecast. In such a situation a non-integer (fractional) lag will need 

to be used and therefore a model with a geometric or negative binomial delay function is not 

appropriate. To account for the possibility of unequal lags and improve the accuracy of the 

model, we consider using continuous functions to model the delay. In this study we will be 

using an exponential delay function of the form below: 

                   (3) 

The exponential delay function is the continuous analog of the geometric delay function used 

in Toktay et al. (2000). Figure 3 shows an illustration of geometric and exponential delay 

functions with the parameter q for the geometric and 𝜆 for the exponential chosen so that the 

value of the delay functions are equal, to three decimal places, for the first lag.  

INSERT FIGURE 3 ABOUT HERE 

 

In Figure 3 the estimate of the delay function at lag 2 for the exponential delay function 

.k
k ep  
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(0.155) is approximately 7% larger than that of the geometric delay function (0.145), even 

though the two functions are equal at lag 1. This illustrates a bias associated with using the 

geometric delay function to estimate a continuous exponential delay. The cost implications of 

the bias are illustrated with a numerical example in a later section. Figure 3 also shows that 

the geometric delay function is undefined for fractional time periods, therefore forecasts 

using fractional time periods with the geometric delay would be an extrapolation. Another 

advantage of using an exponential delay function is that it is more consistent with the 

assumption of exponential inter-arrival times of returns used in returnable inventory systems 

(Buchanan & Abad, 1998; Toktay et al., 2000). A third benefit of using an exponential delay 

is in the interpretation of the parameters of the DLM. With an exponential delay the 

parameter 𝜆 is interpreted as the average delay rate which is the average number of lags per 

return period. Therefore it can be used to indicate, on average, how many months of previous 

sales contribute to a month’s worth of returns. This rate interpretation may have more 

practical meaning to managers than the interpretation of q in the geometric delay as being the 

conditional probability of a product return. A key advantage of the methods developed in this 

study, for estimating the model with an exponential delay function, is that it can be extended 

to developing models with other types of continuous delay functions and therefore the 

contributions of this study extend to many areas, and provide a significant addition to the 

existing literature.  

Once an appropriate forecasting mechanism has been developed for the product returns, a 

second concern from a production control and inventory management perspective is how to 

best use this information to minimize the production and inventory costs. Both deterministic 
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and stochastic models have been used in the remanufacturing literature to determine the 

quantity to remanufacture. Dekker, Fleischmann, Inderfurth, and van Wassenhove (2004) 

give an overview of inventory models that have been used for remanufacturing. The 

stochastic models used have treated demand and returns as stochastic processes, but many of 

these models assume that demand and returns are independent processes. Kiesmueller and 

Van der Laan (2001) showed that this assumption can lead to poor cost performances of 

inventory systems with product returns. Kelle and Silver (1987) were one of the earlier works 

to exploit the relationship between returns and past sales in an inventory model. They used 

their returns forecasting method to estimate parameters that were then used to compute a base 

stock level for a continuous review system. As previously mentioned there were drawbacks to 

their forecasting approach. Toktay et al. (2000) used a queuing model to determine the 

remanufacturable inventory quantity. Like Kelle and Silver (1987) they exploited the 

relationship between sales and returns volumes to estimate the rate of returns and compute an 

aggregate base stock level. However, the queuing model that was used required several 

exogenous parameters to be known or estimated including the service rates of suppliers and 

retailers, and the assumption that the retailer’s inventory is observable. In addition the 

queuing model is reliant on the assumption that the parameters used for the model represent 

the steady state of the system. However, as noted by Toktay et al. (2000, p. 1416), the 

estimates of the parameters obtained from the DLM are transient and therefore the queuing 

model does not result in an optimal inventory policy. In this study, the use of the newsvendor 

model is proposed to determine the amount of returned product to remanufacture, which will 

minimize holding and production costs given the forecasted distribution of product returns. In 
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contrast to the queuing model, the newsvendor model does not require the estimation of 

several parameters and is not dependent on the estimation of steady state parameters for 

inventory decisions. This is because it is a single period model that allows for model 

parameters to be adjusted each period (Khouja, 1996, 1999). The single period nature of the 

decisions made in Figure 1 makes the newsvendor a natural modeling approach to employ, 

and it has been used in prior remanufacturing studies for acquisition decisions (e.g., Galbreth 

& Blackburn, 2006; 2010). While the use of a multi-period model (for an example see 

DeCroix & Zipkin, 2005) may result in an optimal decision, the added complexity of the 

model may outweigh the motivations and contributions of this study. Indeed, DeCroix and 

Zipkin (2005, p. 1252) noted that the consideration of product returns which are dependent on 

past sales would add additional complexity to their multi-period model which would yield 

little benefit. Further justification for the use of the newsvendor model is provided in the next 

section on model development.  

MODEL DEVELOPMENT 

With the exponential delay function, using the DLM in Equation (1), we can represent the 

number of products returned during a period that can be remanufactured as follows: 

t
t

tttt nepnepnepnepm    









1

)1(
3

3
2

2
1 ... ; For t=2, 3,…, T.  (4) 

Using the Koyck transformation, subtracting 1


tme   from both sides of Equation (4), we 

obtain: 

111 






  ttttt enepmem   ; For t=2, 3,…, T.       (5) 

Let 1
 ttt eu   . To estimate the parameters in Equation (5) we need to determine the 

likelihood function (i.e., a function of the data and parameters of interest; Rossi, Allenby, & 
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McCulloch, 2005). This is found by first determining the covariance matrix. For a given set 

of (T) time periods ),..,,( 32 Tuuuu , the covariance matrix for u is given by GΣ 2u  

where G is the 𝑇 1 𝑇 1  matrix: 
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Given the set of returns ( ),......,,( 32 Tmmmm ) and sales ( ),......,,( 121  Tnnnn ) for periods 

t=1,…, T, the likelihood (Rossi et al., 2005) for the parameters is therefore given by: 

 ℓ 𝜆,𝑝,𝜎 ∝
|𝐆| ⁄

⁄ exp 𝐦 𝑒 𝐦 𝟏 𝑝𝜆𝑒 𝐧 𝐆 𝐦 𝑒 𝐦 𝟏 𝑝𝜆𝑒 𝐧 , 

(6) 

where 𝐦 𝟏 𝑚 ,𝑚 , … ,𝑚 , |𝐆| is the determinant of the matrix G and the symbol 

“∝” indicates the absence of the normalizing constant. To estimate the parameters in Equation 

(6) using a Bayesian approach, we need to first specify priors for the parameters. We used the 

following conjugate priors for 𝑝, 𝜆, and 𝜎 :  

 00 ,~  Gamma
,
 

𝑝 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 0,1 , 

),
2

,
2

(~
2
0002 svv

mmaInvertedGa
 

where 𝑠  (the sum of the squared deviations of returns) and 𝑣  are prior parameters to be 

specified; Rossi et al. (2005) provide details on how to specify 𝑣 . 

Similarly 𝛼   and 𝛽  are prior parameters to be specified. The inverted gamma distribution 

′ 



www.manaraa.com

 17

can also be represented as the inverse of a scaled chi-squared random variable with 

appropriate degrees of freedom (Rossi et al., 2005). Therefore an alternative representation of 

the prior distribution of the variance parameter is
2

2
002

0

~





s
. We make use of this 

representation later on. 

In Bayesian analysis, the prior distribution represents the beliefs of the decision maker 

about the unknown parameters expressed in a probabilistic statement. Since the performance 

of successive updates depends on the prior, its choice is important (Rossi et al., 2005, Ravines, 

Schmidt, & Migon, 2006). Toktay et al. (2000) used the “non-informative” prior  for the 

variance parameter and the Uniform(0,1) prior for the parameters 𝑝 and q. The advantages 

of using such priors are that they help to simplify the calculations and they are robust (Berger, 

1985). The use of the exponential delay function means that the parameter space of 𝜆 (i.e., 

all positive real numbers) cannot be represented with the uniform distribution as considered 

in Toktay et al. (2000). Also, the  prior is an improper prior (i.e., it does not integrate to 1 

over the possible parameter space of 𝜎). Berger (1985) shows how the use of improper priors 

can lead to improper posterior distributions, and therefore an inaccurate forecasting 

distribution for returns. Gelfand and Sahu (1999) stress that the use of improper priors when 

employing Monte Carlo Markov Chain (MCMC) estimation techniques, as used in this study, 

often lead to biased results. The problem of improper priors is avoided by using the conjugate 

priors above. A conjugate prior for a parameter is a distribution for which the posterior is also 

of the same family. The inverse gamma distribution is the natural conjugate prior for 𝜎  

(Fink, 1995, Rossi et al., 2005, p. 24). The gamma distribution is the conjugate prior 

of 𝜆 and the uniform distribution is a conjugate prior for 𝑝 (Fink, 1995). A criticism of 
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conjugate priors is that, in general, they are not as robust as non-informative priors. However, 

if different specifications of the conjugate priors lead to the accurate recovery of the actual 

parameters used in a simulation, then the prior is considered to be fairly robust and can 

therefore be used for estimation (Gelfand & Sahu, 1997). The simulation results in Appendix 

A show that this was indeed the case in this study; therefore robustness of the conjugate 

priors was not considered an issue. The specification of the conjugate priors and the use of 

the exponential delay make it difficult to solve analytically for the posterior distributions, 

therefore a MCMC solution approach was employed. The posterior distributions for 

𝑝, 𝜆, and 𝜎  are estimated by making use of the random walk Metropolis–Hastings (M-H) 

algorithm to simulate draws from the posterior distribution of model parameters (Chib & 

Greenberg, 1995; Rossi et al., 2005, p. 86).  

The details of the estimation procedure are provided below: 

(i) Start with initial point estimates �̂�, 𝜆, and 𝜎 . 

(ii) Generate: λ λ ε; ε~N 0, step ; �̂� �̂� 𝜉 ;  𝜉 ~𝑁 0, 𝑠𝑡𝑒𝑝 ; 

step and step1 are numerical values chosen to enable the algorithm to have 

sufficiently navigated the space where the posterior has high mass. 

(iii) Compute 𝛼 𝑚𝑖𝑛 1,
ℓ , ,

ℓ , ,
; where 𝜋 .  is the prior for 𝜆. 

(iv) With probability 𝛼, 𝜆= neŵ  and �̂� =�̂� , else 𝜆= old̂  and �̂�=�̂� . 

(v) Generate G using 𝜆. 

(vi) Generate: 𝜎 |𝒎,𝒏, 𝜆,𝑝 ~  with 𝜈 𝜈 𝑇 1 , 𝑠 . 

(vii) Repeat (ii)–(vi) for a sufficient number of times (10,000 was used for this study). 

The above yields the estimates (�̂�, 𝜆,𝜎 ) for the joint posterior distribution for 𝑝, 𝜆, and 𝜎 . 
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The estimate of the posterior distribution for 𝑚  (i.e., 𝐹 𝑚 , which is the period forecast 

of the distribution for 𝑚 ) can then be obtained by making the relevant substitutions into the 

part of Equation (4) which does not include the error terms (εt). This forecasted distribution 

function can then be used to estimate the quantity 𝑄∗ which minimizes inventory costs in 

Figure 1, as explained below.  

 

Estimation of the Quantity 𝑸𝒕
∗ which Minimizes Inventory Costs 

To estimate 𝑄  in the environment described in Figure 1, let 𝑐  cost of overestimation per 

unit per period and 𝑐  cost of underestimation per unit per period. In the context of the 

problem described in Figure 1, if less remanufacturable returns arrive than predicted by the 

forecast of the distribution of returns, in a period in which cores need to be acquired, then this 

leads to an expedited order to the brokers for the remaining balance. Thus, the number of 

units expedited is the units overestimated. Therefore, 𝑐  is the cost differential between 

ordering a unit core from brokers later on in the period and at the beginning of the period (e.g., 

expedited order at premium costs, or the cost of a new part used for remanufacturing). 

Similarly, if more remanufacturable products are returned in a period than are predicted by 

the forecast of the distribution of returns, then this would result in those additional cores 

remaining in inventory at the end of the period. Thus, the number of units underestimated is 

added to the end-of-period inventory. 𝑐  is therefore the period cost of not remanufacturing 

a usable returned product during the period (e.g., period inventory cost per unit, or the cost of 

the removal of valuable usable parts then disposal, per unit). The following newsvendor 

objective can then be used to determine 𝑄  in each period t: 
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where (.)tF  is the cumulative distribution function (cdf) for 𝑚 . This leads to the well 

known result for the 𝑄∗ quantity that minimizes Equation (7): 
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Thus, the estimate of 𝑄∗ can be obtained using the period forecast of the cdf of product 

returns (i.e., 𝐹 𝑚 ). Note that the accuracy of the forecast, 𝐹 𝑚 , from the DLM in 

Equation (4) depends on the use of the most recent information meaning that the single 

period forecast based on the most recent sales and returns information will be the most 

accurate of any future period forecasts. The DLM, used in this way, is therefore consistent 

with a single period model such as the newsvendor model. 

  We coded the M–H algorithm, used to obtain 𝐹 𝑚 , with the R version 2.6.1 software 

language (a copy of the code is available from the authors upon request). Data is input as an 

Excel comma-separated values (csv) file and the results are output in the same format. An 

example with 40 periods of sales and product returns data required approximately 68 seconds 

to run on a Toshiba NB205 notebook with 2GB RAM and an Atom 1.6GHZ processor. 

As long as proper priors are used, the M–H algorithm can successfully be used to obtain 

the posterior distribution of any properly specified likelihood (Chib & Greenberg, 1995, p. 

330). Thus the above algorithm could be modified for estimating any type of delay function 

used in the DLM. We therefore used the M–H algorithm to also estimate the DLM with the 

geometric delay function used in Toktay et al. (2000) and evaluated this version along with 

our exponential delay model. Because of data confidentiality issues, we were unable to obtain 

the data used in Toktay et al. (2000) to evaluate our model. We therefore used simulated 
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versions of that data for our comparisons. The details and results of the simulation are shown 

in the next section. 

MODEL VALIDATION AND COMPARISONS 

Model Validation 

To check that the M–H algorithm could correctly estimate the distribution of the rate 

parameter, 𝜆, for our exponential delay model and that our conjugate prior choices were 

fairly robust, we ran a simulation. Details of the simulation are provided in Appendix A. We 

were able to accurately estimate all the parameters in each of the scenarios considered in the 

simulation. The results of the simulation therefore showed that the posterior distributions 

were fairly robust to our selection of prior specifications and also that the M–H algorithm 

was able to correctly estimate the various parameters. 

We also estimated the posterior distribution for the geometric delay parameter (q) for the 

model used in Toktay et al. (2000), by using an inverted gamma conjugate prior for the 

variance parameter (instead of the non-informative prior used in Toktay et al., 2000) and 

constructing an M–H algorithm to perform the estimation. Similar to the exponential delay 

model, we performed a simulation to check that the M–H algorithm we constructed for the 

geometric delay could correctly recover actual parameters. Parameters for the simulation 

were chosen to be consistent with the simulation performed in Toktay (2004) (i.e., q=0.125, 

sales was generated with a Poisson random variable with parameter 200). The resulting 95% 

credible intervals and time series plots for the parameter q (not shown) indicated that the 

M–H algorithm was able to correctly estimate the parameter (q). Similar to the evaluation of 

the exponential delay model, we tried different prior (i.e., 𝑝 ,𝑞 , and 𝜎 ) specifications and 
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we were able to recover the actual parameters for all specifications.  

Comparison of New (Exponential Delay) Model with Existing (Geometric Delay) Model 

Our survey of the literature revealed that the DLM proposed by Toktay et al. (2000), for 

forecasting product returns, required the least amount of data for estimation out of all models 

considered in the literature in which random returns were allowed to depend on past sales. 

Therefore the use of the DLM, along with Bayesian estimation, for modeling product returns 

has a significant estimation advantage over previous models. However, the use of a geometric 

or exponential delay in the DLM depends on the data. If the data is collected in discrete equal 

periods and the lags are more consistent with a geometric distribution then the geometric 

delay model can be used. However, if the lags of the data collected are consistent with the 

exponential distribution then our model provides an alternative to the geometric delay model. 

A natural question that arises is: what is the bias involved in using a geometric delay for 

estimation when the data actually follows an exponential delay (and vice versa)? To answer 

this question we ran simulations to evaluate the performance of the two methods when the 

data was generated with the other type of delay function. First, an exponential delay function 

was used to estimate the parameters for data generated by a geometric delay function with 

equal lags. Next, a geometric delay function was used to estimate the parameters for data 

generated by an exponential delay function of equal and unequal lags. Performance was 

measured by the mean absolute percent estimation error (similar to the MAPE measure used 

for evaluating time series forecasts in Chatfield (1996)) for each delay function, as specified 

in Equation (9):  

Error  
 ∑

 x 100%,                      (9) 
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where 𝑟 𝑘  is the point estimate of the delay function at lag 𝑘; 𝑟 𝑘  is the actual value 

of the delay function at lag k (i.e., 𝑟 𝑘 1)1(  kqpq  or 𝑟 𝑘  = 𝑝𝜆𝑒 ); 𝑛  is the 

sales at lag k; T is the maximum number of estimation periods in the dataset (40 in our 

simulation). We ran simulations to evaluate the performance of the methods, using Equation 

(9), with data specifications that were either matched or mismatched with model 

specifications. The unequal lags data for the simulation was generated with the first lag 

chosen to be 1.5 instead of 1. A practical interpretation of this is that this corresponds to 

making next month’s forecast using sales information obtained in the middle of the current 

month as opposed to the end of the month. The sales at lag 1.5 was obtained using a Poisson 

random variable with parameter 10,000 (=20,000/2); all other sales were generated with a 

Poisson random variable with parameter 20,000. Returns were generated using a geometric 

delay function with parameters q=1/t (t=2,…, 12) and an exponential delay function with 

parameter 𝜆 1/t (t=2,…,12). The values of t represent the average duration that a product 

stays with the customer before it is returned (e.g., minimum of two periods, maximum of 12 

periods corresponding to a year). Note that the geometric delay is undefined for q=1 which is 

why t=1 was not used. For all cases 𝑝 0.5 and 𝜎 1. These parameters were chosen to 

be consistent with the simulations performed in Toktay (2004) for evaluating a DLM with a 

geometric delay. Table 2 below shows the simulation results.  

INSERT TABLE 2 ABOUT HERE 

Table 2 shows that there is negligible estimation error when the geometric delay is used for 

estimation with data generated with the geometric delay, with equal lags, and when the 

exponential delay is used for estimation with data generated with an exponential delay with 



www.manaraa.com

 24

both equal and unequal lags. When the lag in the data followed an exponential pattern and it 

was estimated using a geometric delay (and vice versa), there was a bias of at least 6% on 

average, with maximum percentage errors exceeding 12%. On average, the estimation error 

was slightly lower when the exponential delay estimation was used for data generated with 

the geometric delay with equal lags than when the geometric delay estimation was used for 

data generated with an exponential delay with both equal and unequal lags. The percentages 

are not so different to indicate that one estimation method has a clear advantage over another 

when the data is generated using a distribution other than what is assumed in the model. 

However, our method does offer an alternative to the existing geometric delay function model. 

Table 2 shows that our method reduces the bias in estimation when the data is consistent with 

an exponential delay lag. As mentioned previously in the model development section, an 

exponential delay is more consistent with the assumption of exponential inter-arrival times of 

returns used in returnable inventory systems than a geometric delay. Percentage biases of the 

magnitude shown in Table 2 have cost implications. The next section provides a numerical 

example of our method for forecasting product returns, in the remanufacturing environment 

shown in Figure 1, which illustrates the cost implications. 

NUMERICAL ANALYSIS 

Parameter Values 

We visited the plant for the OEM-remanufacturing operation depicted in Figure 1 and 

discussed the parameter designs for simulating the operation with company managers. The 

cost parameters used are either real data from the company or estimates that we derived after 

we consulted the manager. The average unit purchase price of the cores used by the 



www.manaraa.com

 25

OEM-remanufacturer was estimated to be $450. The average cost of a “bucket” of new parts, 

if used for remanufacturing as a replacement for a core, was estimated to be $900. The unit 

cost of expediting an order for a typical core from brokers was determined to be $45, on 

average. Therefore we set the unit cost of over estimating the volume of product returns, and 

having to expedite a unit from brokers, at $45. In the Hauser and Lund (2003) survey, the 

average holding cost (i.e., $/unit/per year) for cores in the electronics industry was estimated to 

be 15% of the cost of the core (when purchased from brokers). Therefore we set the unit 

holding cost in this study to be $5.63. This unit holding cost represents the cost of under 

estimating the volume of product returns and therefore having to hold returned units in 

inventory. We used these costs as the basis for our numerical example. The monthly sales 

volume of new product for the company was estimated to be 2000 units, on average. 

Therefore, we modeled monthly sales of new products with a Poisson distribution with 

parameter 2000. To model product returns, the exponential delay was used with 𝜆 0.125 

(i.e., the average duration that the product stays with a customer until it is returned is 

=1/0.125= 8 months for the simulation). The probability that a product will ever be returned 

(i.e., 𝑝) was set at 0.5. These values are consistent with previous simulations which used 

DLMs to represent the distribution of product returns (e.g., Toktay et al., 2000; Toktay, 2004). 

The results in Appendix A show that our estimation method is robust to different parameter 

specifications, therefore the use of these parameter values should not affect the qualitative 

conclusions of this simulation study. The standard deviation of the product returns was set 

at 𝜎 100, meaning that product returns had a low coefficient of variation (c.v.) of 10%. 

Demand for the remanufactured product was modeled as a Poisson distribution with 
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parameter 1000. This parameter was chosen so that average supply from the sale of new 

products would match average demand for the remanufactured product. We consider 

alternative c.v. and demand parameters in our sensitivity analysis.  

Policies 

The simulation considered the acquisition policies described earlier in Figures 2a and 2b. In 

the NF policy, shown in Figure 2a, no forecast of product returns is used for procurement 

decisions (i.e., the base case). The amount of cores in stock at the beginning of the period is 

used for remanufacturing and the remaining demand balance is satisfied by acquired cores 

from brokers. We assume that the brokers are able to supply all the quantities ordered (i.e., no 

shortages) and that there is no disposal of cores (i.e., all cores are remanufacturable). 

Consideration of disposals and shortages should not affect the qualitative conclusions of the 

results. Using this policy, all remanufacturable product returns which arrive during the period 

are placed in inventory. 

 The remaining two policies, based on Figure 2b, use forecasts of the distribution of 

product returns to determine the quantity of cores returned during the period that should be 

remanufactured during the same period in order to minimize costs. It is assumed that all 

products returned during the period arrive at a time before the end of the period when they 

can be remanufactured to satisfy demand. In the G policy the geometric delay function 

estimates are used in the DLM to make the forecast, and for the E policy our proposed 

exponential delay function estimates are used to make the forecast. The amount of cores in 

stock at the beginning of the period is used for remanufacturing and, after accounting for 𝑄∗, 

an order quantity (i.e., 𝐴 ) is placed with the brokers for the remaining demand balance. With 
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both G and E forecasting policies, if less remanufacturable returns arrive than predicted by 

the forecast of the distribution of returns (i.e., 𝑚 𝑄∗), in a period in which cores need to 

be acquired, then this leads to an expedited order to the brokers for the remaining balance 

(i.e., 𝑄∗ 𝑚 ). Therefore, the number of units expedited would be the units overestimated. 

Similarly, if more remanufacturable products are returned in a period than predicted by the 

forecast of the distribution of returns (i.e., 𝑚 𝑄∗), then this would result in those 

(i.e., 𝑚 𝑄∗) additional cores remaining in inventory by the end of the period. Therefore, 

the number of units underestimated is added to the end-of-period inventory. 

Implementation 

For each of the three policies, the system begins with no cores in inventory. Each period in 

which acquisition decisions are made represents a month. It is assumed that all unsatisfied 

demand for remanufactured products is met with expedited cores. Thirty periods of sales 

were considered with forecasting started in the fifth period of sales (i.e., 26 periods of 

forecasts were considered). At the beginning of each period the following sequence of 

activities occur using the data to date: forecast the distribution of returns (𝐹 𝑚 ), estimate 

the quantity of cores returned during the period that should be remanufactured during the 

same period in order to minimize costs (𝑄∗), and then use the estimate to determine the 

quantity of cores to procure from core brokers (𝐴 ). For the G and E policies, the 

procurement quantity represents the smallest integer greater than or equal to the amount 

suggested by using the forecast of the distribution of returns. Costs are computed over the 26 

periods in which forecasts were used, and these include period costs for initial acquisition, 

expedited purchases, and inventory carrying. Thirty simulation runs were carried out for each 
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scenario enabling confidence intervals to be obtained for each performance measure. For 

each run, the same initial random number seed is used across all three policies in order to 

reduce the variance in pair-wise comparisons. 

Results 

The costs for the three simulated policies are shown in Table 3. The results from the table  

INSERT TABLE 3 ABOUT HERE 

show that the simulated average period costs when forecasts are used is 10.5% lower with the 

geometric delay and 19.3% lower with the exponential delay when compared to costs when 

no forecasts are used to determine the quantity of cores to acquire from brokers. The use of 

the exponential delay model for forecasting resulted in 11.1% lower costs than when the 

geometric delay was used. This translates to period (e.g., monthly) savings of $8,031, on 

average, because of the improved forecast accuracy when using the exponential delay model 

with the data. Table 3 also shows that the average inventory over the 26 periods when no 

forecasting is used is 779 units. In contrast the average inventory when the geometric delay is 

used for forecasting is approximately 8 units and this is further reduced to approximately 5 

units when the exponential delay is used for forecasting during the same 26 period 

forecasting horizon. These represent a 99.0% and 99.4% reduction, respectively, in units held 

in inventory, on average during the period, compared to when no forecasting is used. The use 

of the geometric delay model for forecasting data consistent with an exponential delay 

resulted in an average of 7 (≈8.48–2.00) additional units being expedited and an average of 

4 (≈7.39–4.21) additional units held in inventory, compared to when the exponential delay 

model was used. These represent an 82.5% and 54.1% reduction, respectively, in units 
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expedited and units held in inventory on average during the period. These reductions are 

significant, as shown by the confidence intervals in Table 3, and indicate that there are 

significant cost savings to be made via the use of accurate forecasts of the product returns 

distribution when making purchasing decisions for cores.  

Sensitivity Analysis 

Realizing that some other factors may influence the results, we conducted sensitivity analyses 

by varying the cost structure, c.v. of product returns, and the demand rate for remanufactured 

products. For the cost structure, we varied the newsvendor critical fractile used in Equation (8) 

from the current 11% to 50% and 89%, respectively. The current 11% cost structure 

represents the situation whereby overestimation of 𝑄∗ is more expensive than 

underestimation (i.e., 𝑐 𝑐 ). The 89% critical fractile represents the opposite situation 

when 𝑐  = 𝑐 . In practice, this type of cost structure may occur in the situation whereby 

constraints on storage space lead to per period unit inventory carrying costs, and/or disposable 

costs, which are high relative to unit core expediting or core replacement costs. The 50% cost 

structure represents the situation whereby the over and underestimation costs are equal (i.e., 

𝑐 𝑐 ).   

 For the c.v. of product returns, we varied the c.v. from the current low level of 10% to a 

medium level of 33% and a high level of 100%. These values are consistent with coefficients of 

variation used in other studies (e.g., Vlachos & Dekker, 2003) with newsvendor objective 

functions. 

 For the demand factor, we used demand rates for the remanufactured products that were 

representative of low and high rates that had previously been used in the literature. Kiesmuller 
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and Minner (2003) and Teunter, van der Laan, and Vlachos (2004) represented a low and high 

demand rate for remanufactured products as having a ratio of mean demand to mean product 

returns of 0.6 and 0.9, respectively. Therefore, we set our low demand level for our sensitivity 

analysis at 60% of the average demand in the base case (i.e., 600 units). In the base case 

described earlier, average demand for the remanufactured products was set equal to the average 

volume of products returned during the 30 periods of simulation; therefore the base case was 

set as our high demand level. Table 4 shows the cost ratios for various policies at the different 

factor levels used in the sensitivity analysis. 

INSERT TABLE 4 ABOUT HERE 

 

The results in Table 4 show that forecasting leads to a reduction in all the scenarios 

considered. The greatest percentage gain was in the low demand, low c.v., 89% cost structure 

scenario, in which cost savings in excess of 52% were achieved. This is because at low 

demand volumes, most of the demand can be met from cores already in inventory and/or 

products being returned during the period. This results in little or no expediting of cores when 

forecasting is used for acquisition decisions. Also, forecasting accounts for the expected 

quantity of products to be returned during a period and therefore results in infrequent 

acquisition of cores at low demand rates. Without forecasting, the balance of cores is 

purchased at the start of the period and any returned products during the period are placed in 

inventory. With high inventory related costs (e.g., a critical fractile of 89%) in addition to low 

demand, forecasting results in lower inventory levels and therefore significant cost savings 

versus no forecasting. At higher demand rates, acquisition and expediting costs increase 
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which result in cost savings from forecasting which are still positive but smaller than savings 

at lower demand rates.  

 In all the scenarios considered the largest percentage gains occur in the low c.v. scenarios. 

The lower variability in the distribution of returns, as measured by the c.v., results in less 

volatility in the forecast of the distribution of product returns and therefore less over and 

under estimation of the of the expected quantity of products to be returned during a period. 

This results in lower costs when forecasting is used with a low c.v. versus a medium or a high 

c.v. 

 The  results in Table 4 show that at low demand rates there is little difference in the 

cost savings from using either the geometric or exponential model to make forecasts (i.e., at 

the low demand rate the percentage differences in Table 4 were insignificant). This is because 

at low demand rates overestimation does not necessarily result in expediting costs since 

acquisitions rarely occur and demand is mostly met with returned products or cores in 

inventory. Similarly, at low demand rates underestimation does not necessarily result in larger 

acquisition quantities leading to higher inventory levels. This means that any differences in 

forecast accuracy at low demand rates are unlikely to result in significant cost savings when 

forecasting is used. 

 At the high demand rate, Table 4 shows that there are cost savings at all three cost 

structures as a result of using our proposed exponential delay model for forecasting versus the 

geometric delay model. The cost savings were highest at a cost structure of 11%, which is 

when the cost of overestimation (e.g., expediting and/or using new parts for remanufacturing) 

is larger than the cost of underestimation.  
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CONCLUSIONS 

We developed a model that can be used to accurately forecast the distribution of returns for 

remanufacturing in any period. For an OEM who also remanufactures, our analysis showed 

that the use of forecasts for sourcing cores from brokers can yield significant cost savings as 

compared to when cores are acquired without first forecasting the expected quantity of 

products to be returned during a period. The methodology used for estimation can be applied 

to the estimation of the parameters of any properly defined delay function in a DLM. This 

further generalizes the application of the DLM for forecasting product returns data with 

various lag patterns. We compared our method to an existing DLM which had been used for 

forecasting product returns and found that our approach provided more accurate estimates 

when the return lags were exponential in nature. The analysis revealed that these gains in 

accuracy resulted in the most cost savings when demand volumes were high compared to the 

volume of returned products. Such situations require the frequent acquisition of cores to meet 

demand. The results show that significant cost savings can be achieved by using the proposed 

approach for sourcing product returns in such situations. An area for future research is the 

evaluation of the cost savings as a result of using the proposed forecasting model in other (i.e., 

non newsvendor) inventory type settings. Another area for future research is the consideration 

of uncertainties in both the demand and supply of cores when using forecasts to make 

acquisition decisions.   
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APPENDIX A: EVALUATION OF M–H ALGORITHM PARAMETER 
ESTIMATION 

To check that the M–H algorithm could correctly estimate the distribution of the rate 

parameter, 𝜆, for our exponential delay model and that our conjugate prior choices were 

fairly robust, we ran the following simulation. Parameters for this simulation were chosen to 

be consistent with those used by Ravines et al. (2006) to evaluate a DLM obtained using an 

MCMC technique. Five periods of returns (i.e., T=6, 𝑚 =0) were simulated using code 

developed with the R version 2.6.1 software language. The parameters used for the data are 

as follows: 𝜆  0.5; 𝑝 0.5; 𝜎 1; the vector n was generated using a Poisson random 

variable with parameter 200; m was generated according to Equation (4). The step size of 0.7 

was chosen to have an acceptance rate between 30%–40% which would enable the walk to 

have sufficiently navigated the space where the posterior has high mass (Rossi et al., 2005). 

The prior specifications were: 𝛼 =2, 𝛽 =1, 𝑣 =3, and 𝑠  =1. Other prior specifications 

were tested (results in the table below) and these did not have any influence on the resultant 

posterior. The algorithm was run for 10,000 iterations, with the first 1,000 iterations as 

burn-in (i.e., discarded). ACF (autocorrelation function) plots were constructed to check for 

convergence of the algorithm. The ACF plots (not shown) indicated that there was no 

autocorrelation between the draws after the burn-in (i.e., burn-in was at the 1000th draw and 

the autocorrelations were negligible after the 40th draw) and therefore the algorithm 

converges. The resulting 90% confidence interval contained the true parameter which showed 

that the code was able to recover the parameter of the simulation. Values of 𝛼  ranging from 

1 to 10 and 𝛽  ranging from 0.1 to 3 were tried. These parameters were chosen to represent 

a variety of shapes and scales for the prior consistent with those considered in Fink (1995) for 
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evaluating the Gamma conjugate prior. These values did not have a strong effect on the 

posterior distributions of the parameters (i.e., the algorithm was still able to recover the 

parameters of the model with these alternate hyper parameter values). Alternate values of the 

parameters (𝜆 0.2 , 𝑝 0.7 , and 𝜎 0.3  were also tried and the model was also 

able to recover these parameters. Table A1 below shows the credible intervals for a subset of 

the values tried. 

[ INSERT TABLE A1 HERE.] 

 

All of the 95% credible intervals reported in Table A1 capture the true parameters. This 

shows that the posterior distributions are fairly robust to our selection of prior specifications 

and also that the M–H algorithm is able to correctly estimate the various parameters. 
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Table A1: Credible intervals for different parameter and hyper parameter values. 
 

𝛼   𝛽  𝜆 𝑝 𝜎  95% Credible 

intervals for 𝜆 

95% Credible 

intervals for 𝑝 

95% Credible 

intervals for 𝜎  

1 1 0.5 0.5 1.0 (0.38,0.77) (0.31,0.67) (0.51,5.8) 

10 1 0.5 0.5 1.0 (0.48,1.2) (0.35,0.81) (0.38,5.1) 

2 3 0.5 0.5 1.0 (0.38,0.88) (0.41,0.58) (0.8,5.8) 

2 0.1 0.5 0.5 1.0 (0.32,0.65) (0.45,0.72) (0.3,5.2) 

2 1 0.2 0.7 1.0 (0.18,1.3) (0.56,0.89) (0.2,2.8) 

2 1 0.5 0.7 3.0 (0.48,0.78) (0.61,0.93) (0.8,5.4) 

2 1 0.2 0.7 3.0 (0.05,0.35) (0.77,0.98) (0.2,4.8) 
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Figure 1: A manufacturing–remanufacturing operation with dual sourcing of cores. 
 

 

 

  

Remanufacturing 

Customers: 

New Products 

𝐴  𝐼 𝑄  

Remanufacturable 

Cores 

Core Brokers 

𝐷  

Customer’s demand for 

remanufactured product 

Quantity remanufactured 

from stock 

Quantity of cores 

acquired from brokers 

𝑚  

Cores returned to 

OEM from Customers 

Manufacturing 

F.G 

𝑛  

OEM 

Sales of new product to 

customer 

New parts 𝐷 𝐼 𝑄 𝐴  

Customers: 

Remanufactured Products 



www.manaraa.com

 41

 

Figure 2: Timeline for the core acquisition decision by the OEM-remanufacturer.  
2a) Without forecasting 
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Figure 3: Comparison of a discrete and a continuous delay function. 
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Table 1: Notations used in Figure 1. 
Notation Description 

tD
 

Demand for the remanufactured product by the end of period t, known at the 

end of t-1. 

tI
 Volume of useable cores in inventory at the end of period t. 

tQ
 

Decision variable for quantity of cores returned during period t that should 

be remanufactured during period t to minimize costs. 

tn
 Number of new components sold in period t.  

tA
 Quantity of cores acquired from brokers by the end of period t. 

𝑚  
Number of products returned during period t-1 to t that can be 

remanufactured. 

)(a  =max(a,0). 
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Table 2: Simulation results when actual and estimated specifications are matched and 
mismatched. 
Actual Specifications Model Specifications Minimum 

Percentage 

Error 

Average 

Percentage 

Error 

Maximum 

Percentage 

Error 

Geometric delay  Geometric delay (priors: 

q0=0.2, σ0=0.5) 
0.00% 0.006% 0.011% 

Exponential delay with 

equal lags (priors: 

λ0=0.2, α0=2, β0=1, 

σ0=0.5) 

1.82% 5.96% 12.13% 

Exponential delay 

with equal lags (i.e., 

lag1=1) 

Exponential delay with 

equal lags (priors: 

λ0=0.2, α0=2, β0=1, 

σ0=0.5) 

0.00% 0.017% 0.082% 

Geometric delay with 

equal lags (priors: 

q0=0.5, σ0=0.5) 

2.28% 6.53% 18.28% 

Exponential delay 

with unequal lags 

(i.e., lag1=1.5) 

Exponential delay with 

unequal lags (priors: 

λ0=0.2, α0=2, β0=1, 

σ0=0.5) 

0.00% 0.007% 0.019% 

Geometric delay with 

unequal lags (priors: 

q0=0.5, σ0=0.5) 

2.41% 6.71% 19.56% 

Note: Percentage errors were calculated over 40 periods of estimation.  
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Table 3: Simulated averages (and 95% confidence intervals) for three acquisition policies. 
Policy Description Total Costs 

($1,000s) 

Units remaining in 

Inventory  

Units expedited 

1. NF No forecasts 90 ± 0.91 779 ± 0.92 - 

2. G 
Forecasts using 

Geometric Delay 
81 ± 0.91 7.39 ± 0.73 8.48 ± 0.30 

3. E 
Forecasts using 

Exponential Delay 
72 ± 0.81 4.21 ± 0.51 2.00 ± 0.32 
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Table 4: Relative costs of acquisition policies under various scenarios. 
Demand Rate Coefficient of 

Variation 

(c.v.) 

Policies 

Compared 
Cost Structure 

x100%







 uo

u

cc

c

 

11% 50% 89% 

Low 

Low 

𝑁𝐹
𝐺

 142.9% 148.5% 151.9% 

𝑁𝐹
E

 144.1% 148.1% 153.3% 

𝐺
𝐸

 100.9% 99.7% 101.0% 

Medium 

𝑁𝐹
𝐺

 139.0% 145.8% 149.6% 

𝑁𝐹
E

 139.1% 145.6%  151.0% 

𝐺
𝐸

 100.1% 99.9% 100.9% 

High 

𝑁𝐹
𝐺

 129.2% 140.8% 147.3% 

𝑁𝐹
E

 130.2% 140.0% 147.0% 

𝐺
𝐸

 100.8% 99.4% 99.8% 

High 

Low 

𝑁𝐹
𝐺

 111.7% 124.6% 131.0% 

𝑁𝐹
E

 124.0% 136.3% 141.3% 

𝐺
𝐸

 112.5% 109.3% 107.9% 

Medium 

𝑁𝐹
𝐺

 110.8% 123.4% 127.8% 

𝑁𝐹
E

 122.9% 132.1% 135.3% 

𝐺
𝐸

 110.7% 107.1% 105.9% 

High 

𝑁𝐹
𝐺

 105.5% 121.1% 124.2% 

𝑁𝐹
E

 113.2% 128.4% 130.4% 

𝐺
𝐸

 107.3% 106.1% 105.0% 
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